Investing In Existing Websites: Growth and Failure Rates Three Years After The Auction

Several years ago, we completed a website revenue study focusing on small websites. The goal of this study was to understand how much a typical site should make. We accomplished this by looking at 100 websites listed for public auction at a major site. We recently ran an update on this study to understand how the sites were doing today.

This update measured two things:

  • What % of the sites were still online and indexed by Google?
  • Has the site gotten better or worse since the sale (using competitor analysis tools)?

Continue reading

The Truth About BurgerPress – A Web Strategy Parable

When I was a kid, business competition was local. I grew up on an island in the middle of a lake, which provided a small natural barrier to off-island competitors in the form of a 20 minute drive. So for my favorite hamburger place in high school, run by a great fry cook (Steve), the set of potential competitors was other island residents who were operating with similar labor costs. You *could* start a competing burger joint on the island, but would be hiring from the same pool of people to build and staff the place.

Continue reading

Accelerating Analytics: Decrease The Cost of Asking Useful Questions

“The dog that trots about finds a bone”

– Southern Country Proverb

After twenty years in the business, I am giving up on the idea of asking brilliant questions. They don’t exist. Ironically, most of the questions which have delivered serious money in the past tended to look like relatively dumb ones…

The first set of significant wins I had in my analytics career was in direct marketing, where I moved the campaign analysis process for a $5MM/year program in-house. From a technical perspective, this was pretty straightforward: write a SAS program to merge our mailing list with our customer file then aggregate response and sales data. Since a common key existed on both files (finders file number), it was a simple matter to join the files and summarize the data into an Excel Pivot table. Intern level stuff.

Continue reading

Linkedin Endorsements: How Might They Affect Linkedin’s Search Algorithm?

Linkedin rolled out their one-click endorsement feature this past month. As I’ve traded clicks with friends and colleagues, I’ve been trying to figure out what their real goal is. On the surface, this feature feels redundant with their existing “recommendation” feature. Given their aggressive efforts to promote this new feature, the data they are gathering is clearly important to the development of the algorithms behind their services – but how?

Linkedin has been fairly quiet about the inner workings of their search engine. This is likely to prevent people from manipulating the results, since there is significant value in being on the first page of a Linkedin search for a lucrative professional skill. They share some basic pointers about how to “be visible” on their help page. Key points from their page:

  • There is no single rank for Linkedin Search – results are unique to each user/query
  • The profile keywords of both parties (searcher, results) play a significant role
  • Rankings are adjusted based on how prior searchers have reacted to your profile

While the above metrics are fine for identifying which candidates are relevant to a search, they don’t rate candidate quality: who actually knows their stuff? What’s missing here is a broader assessment of “page trust” (graph model analysis concept) that candidates possess the skills that they reference on a profile. For example, Google’s search algorithm incorporates an evaluation of the credibility of a site using link patterns, brand signals, and social activity. With these new features, it looks like Linkedin may be trying to adapt Google’s Pagerank algorithm (or something similar) to ranking candidates for specific skillsets.

Continue reading

Escaping The Walled Garden of Enterprise Analytics: Using R and Python For Data Analysis

In which an experienced analytics guy advises the younger generation to leave the walled garden of enterprise analytics tools and learn how to write code using a real programming language. Specifically advocating the use of R and Python for data analysis and related programming. But hey, I’m flexible on that point…

The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offense.

– Dijkstra

I was taught a long time ago in some Management 101 course to sandwich constructive criticism between two compliments. So I’ll open with this statement:

SAS and the other BI vendors have done a nice job of bringing statistical computing techniques within the reach of the typical college graduate.

Now pull up a chair and grab yourself some popcorn, since I’m going to bite the hand that fed me for the first half of my career. I spent the first seven years of my career in roles involving significant usage of SAS and a variety of drag & drop query tools. The COBOL of the analytics world.

Continue reading