
Monkeys, Typewriters, and

The Complete Works of

Shakespeare

A Brief Introduction To List Comprehensions

MarginHound

hound@marginhound.com

October13th 2011

http://www.marginhound.com/

Introduction

• List comprehensions evolved out of notation used by
mathematicians to describe sets of numbers

• Generates a new list object using a single statement.

– Concise syntax performs the work of many other statements, with less
code

• Can be used for many things – not just list generation

– Obvious application is mathematics and data slinging

– But can be used for more – templates/markup, file reads,…

– Excellent replacement for messy / repetitive for loops

“Arthur looked up. "Ford!" he said, "there's an infinite number of monkeys outside who

want to talk to us about this script for Hamlet they've worked out.“

- Hitchhiker’s Guide To The Galaxy

Map, Filter, Reduce

Terminology which describes “doing stuff” to lists of values

• Map (function, list)

 Create a new list by applying that function to each element of the original list
(one-for-one mapping)

• Filter (function, list)

 Create a new list by applying a function to every element of the
original list; return all elements where the function evaluates True

• Reduce (function, list)

 Returns a single value from calling a binary function f(a, b) on the first two

elements of the list; then on the result and the next item…

First Example – Filtering & Transforming Data

The Request:

• We have a list of primates (by name)

– Specifically a list of dicts (key: value pairs)

– Could generate this from a database, file, web service, etc.

• Find the monkeys – and generate a list of their names…

The Code…

Both Functions Generate The Same Result

5 lines > 1 line

Could actually

do this without

the function call

Basic Construction

 new list = [<output expression> for <item-reference>

 in <source_list> if <filter-expression>]

The Elements:

• Source List An iterable object (list, dict, generator, tuple)

• Can transform using functions; can be a list comp, may have multiple sources

• Item Reference How to unpack the source list; becomes a local variable

• Output Expression How to create the elements of the new list

• Can apply functions, build lists / tuples, nest list comprehensions

• Filter Expression Optional condition (boolean) to filter out records

Multiple Lists

Can iterate across multiple lists, like a nested for loop

– List comp cycles through lists from left-to-right (left = top for loop)

– Second “loop” can be a second list or “unpack” items from the first list

The Code… (for loop vs. list comp) Results (Same For Both)

Another Example – Templates

• Can use functions & list comps to wrap a “template” around lists of data

• This example builds (and serves) a simple HTML select box

• Filter records

• Extract name
element

• Wrap HTML Tag
around content

• Return new list of
HTML Tags

• Join into string,
wrap <select>
around string

Advanced Construction

Can Combine List Comprehensions With Other Tools

– Transform source list using functions:

– Sorted () Function

– Itertools – Groupby, Chain, etc.

– List Slicing

– Nested List Comprehensions / Generators

– Use another list comprehension as a source

– Use another list comprehension as part of the output statement

– Can reduce sets of grouped data to a single value using len, sum, etc.

An Example – Count Monkeys By Type

Other Tricks…

Some things to think about…

• Can iterate across ranges of the original list

• Note: used an inline if statement in output expression to handle
default values (zero if items has insufficient history to calculate)

• It is possible use a list comprehension purely for a side-effect of the
function being applied to a list (printing, accumulating values)

• This is generally considered bad style (readability, efficiency)

Generators / Generator Comprehensions

• Not the focus of this talk, but worth keeping in mind for large series…

– Python object which generates a series of values, returning one at a time

– Internal syntax similar to a function but:

– Uses a yield statement instead of a return statement

– Internally remembers position within the series

– Can get the next value by calling next(<object ref>)

• Key Benefit – don’t need to create / retain entire list in memory

• However…

– Single Pass – need to re-create if you want to rewind

– This can be an issue if the data source is “expensive” (database, web service)

• Generator comprehensions – formed by using () instead of []

The Complete Works Of Shakespeare

• Read A File

• Create Dictionary with Word Counts

• Sort & Identify Top 25 Words

• Note: nested list comprehension (upgraded to generator
comprehension), sort function modifies initial list

